

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Chloro-4-(piperazin-1-yl)quinoline

Amol A. Kulkarni,^a* Christopher L. King,^b Joseph M. D. Fortunak^b and Ray J. Butcher^b

^aCollege of Pharmacy, Howard University, 2300 4th Street, NW, Washington, DC 2059, USA, and ^bDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC 2059, USA Correspondence e-mail: amol.kulkarni@howard.edu

Received 29 February 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.005 Å; R factor = 0.074; wR factor = 0.228; data-to-parameter ratio = 22.1.

There are two molecules in the asymmetric unit (Z' = 2) of the title compound, $C_{13}H_{14}ClN_3$, Each molecule is linked by N–H···N hydrogen bonds to another of the same type in a chain in [110]. The crystal studied was a non-merohedral twin with components 0.622 (2) and 0.378 (2).

Related literature

The title compound is an important intermediate in the synthesis of the anti-malarial compound piperaquine {systematic name: 7-chloro-4-[4-[3-[4-(7-chloroquinolin-4-yl)-piperazin-1-yl]propyl]piperazin-1-yl]quinoline phosphoric acid}, see: Chen *et al.* (1982); Hien *et al.* (2004); Dongre *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{13} H_{14} {\rm ClN}_3 \\ M_r = 247.72 \\ {\rm Triclinic}, P\overline{1} \\ a = 7.0048 \ (6) \ {\rm \mathring{A}} \\ b = 7.8297 \ (8) \ {\rm \mathring{A}} \\ c = 21.4256 \ (19) \ {\rm \mathring{A}} \end{array}$

$\alpha = 91.371 \ (8)^{\circ}$	
$\beta = 91.292 \ (7)^{\circ}$	
$\nu = 95.210 \ (8)^{\circ}$	
V = 1169.55 (19) Å ²	3
Z = 4	
Cu $K\alpha$ radiation	

•	
organic	compounds
Uguine	compounds

 $0.43 \times 0.35 \times 0.12 \text{ mm}$

6990 measured reflections 6990 independent reflections 5619 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $R_{\rm int} = 0.000$

refinement $\Delta \rho_{\text{max}} = 0.65 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

 $\mu = 2.72 \text{ mm}^{-1}$ T = 123 K

Data collection

Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffrac-
tion, 2007)
$T_{\rm min} = 0.809, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.228$ S = 1.096990 reflections 316 parameters

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3A - H3AN \cdots N1A^{i}$	0.92 (4)	2.18 (4)	3.083 (4)	166 (4)
$N3B - H3BN \cdot \cdot \cdot N1B^{i}$	0.99 (4)	2.12 (4)	3.088 (4)	166 (4)
Symmetry code: (i) $r \pm 1$	$v \pm 1 \pi$			

Symmetry code: (i) x + 1, y + 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

AAK wishes to acknowledge RCMI, Howard University, Center for Drug Research and Development, Howard University and the District of Columbia Developmental Center for AIDS Research (P30AI087714). RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. This project was supported by grant No. D34HP16042-03-03 from the Health Resources and Services Administration (HRSA).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5836).

References

Chen, L., Qu, F. Y. & Zhou, Y. C. (1982). Chin. Med. J. 95, 281-286.

Dongre, V. G., Karmuse, P. P., Ghugare, P. D., Gupta, M., Nerurkar, B., Shaha, C. & Kumar, A. (2007). J. Pharm. Biomed. Anal. 43, 185–195.

- Hien, T. T., Dolecek, C., Mai, P. P., Dung, N. T., Troung, N. T., Thai, L. H., An, D. T. H., Thanh, T. T., Stepniewska, K., White, N. J. & Farrar, J. (2004). *Lancet*, **363**, 18–22.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1497 [doi:10.1107/S1600536812014912]

7-Chloro-4-(piperazin-1-yl)quinoline

Amol A. Kulkarni, Christopher L. King, Joseph M. D. Fortunak and Ray J. Butcher

Comment

Recrystallization of the title compound from 2-propanol removes low levels (1–4%) of impurities that are present from the manufacturing process. Impurities in the desired product arise from the presence of 4,5-dichloroquinoline in 4,7-DCQ and are difficult to remove from the manufacturing process of commercial malaria drugs, including amodiaquine and piperaquine (Dongre *et al.*, 2007).

In view of the pharmaceutical importance of this intermediate its crystal structure was determined. There are two molecules in the asymmetric unit (Z' = 2). Each molecule is linked by N—H…N hydrogen bonds to another of the same type in a chain in the b direction.

Experimental

A solution of 4,7-dichloroquinoline (10 g, 51 mmole, 1 equiv) and piperazine (13.05 g, 153 mmole, 3 equiv) in 2propanol (25 ml) was heated to a gentle reflux for 4 h. The solution was cooled to room temperature. Ethyl acetate (50 ml) was added and the reaction mixture was stirred at room temperature for 14 h. It was then poured into a separatory funnel and was washed with water (3 *X* 50 ml). The organic layer was dried using anhydrous Na₂SO₄. Removal of the solvent *in vacuo* resulted in the isolation of the desired compound as pale yellow crystals. The crude product was recrystallized from 2-propanol to yield colorless crystals of the desired compound. mp 112–114 °C; ¹H-NMR (CDCl₃) d 8.68 (d, J = 4.8 Hz, 1H), 8. 01 (d, J = 9.2 Hz, 1H), 7.69 (d, J = 2.4 Hz, 1H), 7.55 (dd, J = 9.2, 2.4 Hz, 1H), 6.96 (d, J = 4.8 Hz, 1H), 3.12–2.93 (m, 8H).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 and 0.99 [$U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms attached to N were refined isotropically. The structure was a non-merohedral twin with components 0.622 (2) and 0.378 (2).

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2007); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

A view of the title compound, $C_{13}H_{14}ClN_3$, showing atom numbering scheme and the two molecules in the asymmetric unit.

Figure 2

A view of the packing of the molecules showing the chains of molecules linked by N—H…N hydrogen bonds (shown by dashed lines).

7-Chloro-4-(piperazin-1-yl)quinoline

Crystal data	
$C_{13}H_{14}ClN_3$	Z = 4
$M_r = 247.72$	F(000) = 520
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.407 { m Mg} { m m}^{-3}$
a = 7.0048 (6) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 7.8297 (8) Å	Cell parameters from 1440 reflections
c = 21.4256 (19) Å	$\theta = 4.1 - 75.3^{\circ}$
$\alpha = 91.371 \ (8)^{\circ}$	$\mu = 2.72 \text{ mm}^{-1}$
$\beta = 91.292 \ (7)^{\circ}$	T = 123 K
$\gamma = 95.210 \ (8)^{\circ}$	Triangular plate, colorless
$V = 1169.55 (19) Å^3$	$0.43 \times 0.35 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2007) $T_{\min} = 0.809, T_{\max} = 1.000$	6990 measured reflections 6990 independent reflections 5619 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 75.9^{\circ}, \theta_{min} = 4.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -20 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.228$ S = 1.09 6990 reflections 316 parameters 0 restraints	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1441P)^2 + 0.6728P]$ where $P = (F_o^2 + 2F_o^2)/3$
Primary atom site location: structure-invariant direct methods	$\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1A	0.17772 (13)	0.19345 (12)	0.52611 (4)	0.0394 (3)	
N1A	0.5120 (4)	-0.0737 (4)	0.34594 (14)	0.0319 (6)	
N2A	0.9733 (4)	0.3190 (4)	0.35392 (14)	0.0289 (6)	
N3A	1.2344 (5)	0.6024 (4)	0.32035 (15)	0.0343 (7)	
H3AN	1.333 (6)	0.688 (5)	0.3255 (18)	0.023 (9)*	
C2A	0.6631 (6)	-0.0790 (5)	0.31036 (17)	0.0324 (7)	
H2AA	0.6654	-0.1744	0.2822	0.039*	
C3A	0.8204 (5)	0.0455 (5)	0.31094 (17)	0.0309 (7)	
H3AA	0.9209	0.0349	0.2825	0.037*	
C4A	0.8298 (5)	0.1837 (4)	0.35280 (16)	0.0276 (7)	
C5A	0.6879 (5)	0.2915 (4)	0.45125 (16)	0.0302 (7)	
H5AA	0.7997	0.3675	0.4595	0.036*	
C6A	0.5383 (5)	0.2906 (4)	0.49154 (16)	0.0303 (7)	
H6AA	0.5461	0.3641	0.5276	0.036*	
C7A	0.3736 (5)	0.1788 (5)	0.47835 (17)	0.0328 (7)	
C8A	0.3637 (5)	0.0620 (4)	0.43035 (17)	0.0309 (7)	

H8AA	0.2523	-0.0154	0.4235	0.037*
C9A	0.5227 (5)	0.0570 (4)	0.39031 (16)	0.0285 (7)
C10A	0.6789 (5)	0.1820 (4)	0.39786 (16)	0.0285 (7)
C11A	1.1413 (5)	0.2939 (5)	0.31546 (17)	0.0301 (7)
H11A	1.1048	0.2980	0.2706	0.036*
H11B	1.1863	0.1799	0.3234	0.036*
C12A	1.3017 (5)	0.4336 (5)	0.33146 (17)	0.0326 (7)
H12A	1.3421	0.4263	0.3758	0.039*
H12B	1.4137	0.4173	0.3053	0.039*
C13A	1.0730 (5)	0.6282 (5)	0.36040 (18)	0.0321 (7)
H13A	1.0295	0.7433	0.3537	0.038*
H13B	1.1139	0.6219	0.4048	0.038*
C14A	0.9098 (5)	0.4920 (4)	0.34551 (17)	0.0300 (7)
H14A	0.8018	0.5088	0.3734	0.036*
H14B	0.8641	0.5029	0.3019	0.036*
Cl1B	-0.32087 (13)	0.18514 (12)	-0.02405 (4)	0.0397 (2)
N1B	0.0489 (4)	-0.0420 (4)	0.15733 (15)	0.0335 (6)
N2B	0.5041 (4)	0.3518 (4)	0.14536 (14)	0.0279 (6)
N3B	0.7621 (4)	0.6426 (4)	0.17856 (15)	0.0334 (7)
H3BN	0.870 (6)	0.730 (5)	0.1712 (18)	0.024 (10)*
C2B	0.2060 (6)	-0.0387 (5)	0.19218 (17)	0.0335 (8)
H2BA	0.2141	-0.1278	0.2212	0.040*
C3B	0.3630 (5)	0.0859 (5)	0.19001 (17)	0.0307 (7)
H3BA	0.4700	0.0811	0.2178	0.037*
C4B	0.3616 (5)	0.2153 (4)	0.14743 (16)	0.0267 (7)
C5B	0.2016 (5)	0.3037 (4)	0.04913 (16)	0.0289 (7)
H5BA	0.3105	0.3800	0.0403	0.035*
C6B	0.0448 (5)	0.2931 (4)	0.00929 (16)	0.0293 (7)
H6BA	0.0455	0.3597	-0.0272	0.035*
C7B	-0.1172 (5)	0.1822 (5)	0.02324 (17)	0.0325 (7)
C8B	-0.1169 (5)	0.0742 (4)	0.07227 (17)	0.0315 (7)
H8BA	-0.2261	-0.0029	0.0799	0.038*
C9B	0.0492 (5)	0.0790 (4)	0.11170 (17)	0.0286 (7)
C10B	0.2044 (5)	0.2034 (4)	0.10308 (16)	0.0281 (7)
C11B	0.6787 (5)	0.3355 (5)	0.18261 (16)	0.0293 (7)
H11C	0.7254	0.2218	0.1742	0.035*
H11D	0.6506	0.3445	0.2276	0.035*
C12B	0.8319 (5)	0.4759 (5)	0.16633 (17)	0.0313 (7)
H12C	0.9498	0.4652	0.1917	0.038*
H12D	0.8635	0.4645	0.1217	0.038*
C13B	0.5927 (5)	0.6607 (5)	0.13965 (18)	0.0320 (7)
H13C	0.6250	0.6497	0.0951	0.038*
H13D	0.5483	0.7759	0.1469	0.038*
C14B	0.4344 (5)	0.5242 (4)	0.15480 (17)	0.0297 (7)
H14C	0.3963	0.5394	0.1987	0.036*
H14D	0.3208	0.5349	0.1273	0.036*

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1A	0.0319 (5)	0.0398 (5)	0.0473 (5)	0.0056 (4)	0.0108 (4)	0.0045 (4)
N1A	0.0303 (15)	0.0247 (14)	0.0404 (15)	0.0006 (12)	-0.0019 (12)	0.0017 (11)
N2A	0.0248 (14)	0.0273 (15)	0.0352 (14)	0.0050 (12)	0.0037 (11)	0.0018 (11)
N3A	0.0282 (15)	0.0297 (16)	0.0448 (17)	-0.0010 (12)	0.0058 (12)	0.0033 (12)
C2A	0.0365 (19)	0.0235 (16)	0.0376 (18)	0.0060 (14)	-0.0009 (14)	-0.0025 (13)
C3A	0.0276 (17)	0.0276 (17)	0.0385 (18)	0.0066 (14)	0.0045 (13)	0.0017 (13)
C4A	0.0231 (16)	0.0255 (16)	0.0345 (17)	0.0038 (13)	-0.0008 (12)	0.0046 (12)
C5A	0.0276 (17)	0.0252 (16)	0.0380 (17)	0.0027 (13)	-0.0003 (13)	0.0040 (13)
C6A	0.0339 (18)	0.0240 (15)	0.0338 (16)	0.0064 (13)	0.0031 (13)	0.0017 (12)
C7A	0.0319 (18)	0.0311 (18)	0.0368 (17)	0.0080 (14)	0.0061 (14)	0.0054 (13)
C8A	0.0250 (16)	0.0244 (16)	0.0431 (18)	0.0010 (12)	0.0003 (13)	0.0054 (13)
C9A	0.0291 (17)	0.0210 (15)	0.0351 (17)	0.0012 (13)	-0.0034 (13)	0.0026 (12)
C10A	0.0266 (17)	0.0266 (17)	0.0332 (16)	0.0064 (14)	0.0019 (13)	0.0027 (13)
C11A	0.0207 (15)	0.0298 (17)	0.0403 (18)	0.0038 (13)	0.0045 (13)	0.0031 (13)
C12A	0.0284 (18)	0.0316 (18)	0.0383 (17)	0.0045 (14)	0.0021 (14)	0.0039 (14)
C13A	0.0276 (17)	0.0252 (17)	0.0430 (18)	0.0004 (13)	0.0022 (14)	-0.0005 (13)
C14A	0.0255 (16)	0.0256 (16)	0.0391 (17)	0.0024 (13)	0.0025 (13)	0.0022 (13)
Cl1B	0.0304 (5)	0.0384 (5)	0.0496 (5)	0.0016 (4)	-0.0044 (3)	-0.0019 (4)
N1B	0.0287 (15)	0.0258 (14)	0.0453 (17)	-0.0038 (11)	0.0085 (12)	0.0034 (12)
N2B	0.0228 (13)	0.0243 (14)	0.0368 (15)	0.0037 (11)	0.0031 (11)	0.0004 (11)
N3B	0.0272 (15)	0.0296 (15)	0.0425 (16)	-0.0039 (12)	0.0043 (12)	0.0014 (12)
C2B	0.038 (2)	0.0230 (16)	0.0394 (19)	0.0018 (15)	0.0087 (15)	0.0044 (13)
C3B	0.0264 (17)	0.0277 (16)	0.0384 (18)	0.0025 (14)	0.0043 (13)	0.0038 (13)
C4B	0.0220 (15)	0.0225 (16)	0.0356 (17)	0.0012 (13)	0.0063 (13)	-0.0004 (12)
C5B	0.0251 (16)	0.0205 (14)	0.0407 (17)	-0.0001 (12)	0.0057 (13)	-0.0011 (12)
C6B	0.0305 (17)	0.0232 (15)	0.0339 (16)	0.0015 (13)	0.0037 (13)	-0.0017 (12)
C7B	0.0286 (17)	0.0282 (17)	0.0404 (18)	0.0026 (14)	0.0018 (14)	-0.0026 (14)
C8B	0.0243 (16)	0.0245 (16)	0.0454 (18)	-0.0009 (12)	0.0070 (13)	-0.0027 (13)
C9B	0.0258 (16)	0.0198 (15)	0.0400 (18)	-0.0004 (13)	0.0072 (13)	-0.0006 (13)
C10B	0.0244 (16)	0.0226 (16)	0.0373 (17)	0.0019 (13)	0.0057 (13)	-0.0008 (12)
C11B	0.0214 (16)	0.0291 (17)	0.0377 (17)	0.0041 (13)	0.0023 (13)	0.0022 (13)
C12B	0.0224 (16)	0.0304 (17)	0.0411 (18)	0.0015 (13)	0.0053 (13)	0.0036 (14)
C13B	0.0277 (17)	0.0248 (16)	0.0431 (18)	-0.0018 (13)	0.0041 (14)	0.0036 (13)
C14B	0.0263 (16)	0.0221 (16)	0.0406 (18)	0.0023 (13)	0.0028 (13)	0.0002 (13)

Geometric parameters (Å, °)

Cl1A—C7A	1.740 (4)	Cl1B—C7B	1.733 (4)	
N1A—C2A	1.321 (5)	N1B—C2B	1.314 (5)	
N1A—C9A	1.376 (5)	N1B—C9B	1.378 (5)	
N2A—C4A	1.392 (4)	N2B—C4B	1.396 (4)	
N2A—C11A	1.477 (4)	N2B—C11B	1.462 (4)	
N2A—C14A	1.477 (4)	N2B—C14B	1.488 (4)	
N3A—C13A	1.460 (5)	N3B—C13B	1.454 (5)	
N3A—C12A	1.466 (5)	N3B—C12B	1.455 (5)	
N3A—H3AN	0.92 (4)	N3B—H3BN	0.99 (4)	
C2A—C3A	1.402 (5)	C2B—C3B	1.405 (5)	

С2А—Н2АА	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.385 (5)	C3B—C4B	1.380 (5)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C10A	1.447 (5)	C4B—C10B	1.433 (5)
C5A—C6A	1.372 (5)	C5B—C6B	1.371 (5)
C5A—C10A	1.410 (5)	C5B—C10B	1.414 (5)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.402 (5)	C6B—C7B	1.408 (5)
С6А—Н6АА	0.9500	C6B—H6BA	0.9500
C7A—C8A	1.356 (5)	C7B—C8B	1.364 (5)
C8A—C9A	1.424 (5)	C8B—C9B	1.419 (5)
C8A—H8AA	0.9500	C8B—H8BA	0.9500
C9A—C10A	1.404 (4)	C9B—C10B	1.411 (4)
C11A—C12A	1.523 (5)	C11B—C12B	1.518 (4)
C11A—H11A	0.9900	C11B—H11C	0.9900
C11A—H11B	0.9900	C11B—H11D	0.9900
C12A—H12A	0.9900	C12B—H12C	0.9900
C12A—H12B	0.9900	C12B—H12D	0.9900
C13A—C14A	1.514 (5)	C13B—C14B	1.515 (4)
C13A—H13A	0.9900	C13B—H13C	0.9900
C13A—H13B	0.9900	C13B—H13D	0.9900
C14A—H14A	0.9900	C14B—H14C	0.9900
C14A—H14B	0.9900	C14B—H14D	0.9900
C2A—N1A—C9A	115.7 (3)	C2B—N1B—C9B	115.9 (3)
C4A—N2A—C11A	115.9 (3)	C4B—N2B—C11B	116.3 (3)
C4A—N2A—C14A	116.3 (3)	C4B—N2B—C14B	114.5 (3)
C11A—N2A—C14A	110.7 (3)	C11B—N2B—C14B	111.2 (3)
C13A—N3A—C12A	109.6 (3)	C13B—N3B—C12B	109.8 (3)
C13A—N3A—H3AN	113 (3)	C13B—N3B—H3BN	114 (2)
C12A—N3A—H3AN	111 (3)	C12B—N3B—H3BN	107 (2)
N1A—C2A—C3A	125.0 (3)	N1B—C2B—C3B	125.3 (3)
N1A—C2A—H2AA	117.5	N1B—C2B—H2BA	117.4
C3A—C2A—H2AA	117.5	C3B—C2B—H2BA	117.4
C4A—C3A—C2A	120.3 (3)	C4B—C3B—C2B	119.8 (3)
С4А—С3А—НЗАА	119.8	C4B—C3B—H3BA	120.1
С2А—С3А—НЗАА	119.8	С2В—С3В—Н3ВА	120.1
C3A—C4A—N2A	124.3 (3)	C3B—C4B—N2B	123.6 (3)
C3A—C4A—C10A	116.1 (3)	C3B—C4B—C10B	116.5 (3)
N2A—C4A—C10A	119.6 (3)	N2B—C4B—C10B	119.9 (3)
C6A—C5A—C10A	121.3 (3)	C6B—C5B—C10B	121.2 (3)
С6А—С5А—Н5АА	119.3	C6B—C5B—H5BA	119.4
C10A—C5A—H5AA	119.3	C10B—C5B—H5BA	119.4
C5A—C6A—C7A	118.6 (3)	C5B—C6B—C7B	119.1 (3)
С5А—С6А—Н6АА	120.7	C5B—C6B—H6BA	120.5
С7А—С6А—Н6АА	120.7	C7B—C6B—H6BA	120.5
C8A—C7A—C6A	122.2 (3)	C8B—C7B—C6B	121.9 (3)
C8A—C7A—C11A	120.0 (3)	C8B—C7B—Cl1B	120.1 (3)
C6A—C7A—Cl1A	117.8 (3)	C6B—C7B—Cl1B	118.1 (3)

C7A—C8A—C9A	119.1 (3)	C7B—C8B—C9B	118.9 (3)
С7А—С8А—Н8АА	120.5	C7B—C8B—H8BA	120.5
С9А—С8А—Н8АА	120.5	C9B—C8B—H8BA	120.5
N1A-C9A-C10A	124.0 (3)	N1B-C9B-C10B	123.1 (3)
N1A—C9A—C8A	116.5 (3)	N1B-C9B-C8B	116.8 (3)
C10A—C9A—C8A	119.5 (3)	C10B—C9B—C8B	120.1 (3)
C9A—C10A—C5A	118.5 (3)	C9B—C10B—C5B	118.1 (3)
C9A—C10A—C4A	118.2 (3)	C9B—C10B—C4B	118.6 (3)
C5A—C10A—C4A	123.1 (3)	C5B—C10B—C4B	123.2 (3)
N2A—C11A—C12A	109.8 (3)	N2B-C11B-C12B	109.8 (3)
N2A—C11A—H11A	109.7	N2B-C11B-H11C	109.7
C12A—C11A—H11A	109.7	C12B—C11B—H11C	109.7
N2A—C11A—H11B	109.7	N2B—C11B—H11D	109.7
C12A—C11A—H11B	109.7	C12B—C11B—H11D	109.7
H11A—C11A—H11B	108.2	H11C—C11B—H11D	108.2
N3A—C12A—C11A	109.7 (3)	N3B—C12B—C11B	109.4 (3)
N3A—C12A—H12A	109.7	N3B—C12B—H12C	109.8
C11A—C12A—H12A	109.7	C11B—C12B—H12C	109.8
N3A—C12A—H12B	109.7	N3B—C12B—H12D	109.8
C11A—C12A—H12B	109.7	C11B—C12B—H12D	109.8
H12A—C12A—H12B	108.2	H12C-C12B-H12D	108.2
N3A—C13A—C14A	109.9 (3)	N3B—C13B—C14B	110.1 (3)
N3A—C13A—H13A	109.7	N3B—C13B—H13C	109.6
C14A—C13A—H13A	109.7	C14B—C13B—H13C	109.6
N3A—C13A—H13B	109.7	N3B—C13B—H13D	109.6
C14A—C13A—H13B	109.7	C14B—C13B—H13D	109.6
H13A—C13A—H13B	108.2	H13C—C13B—H13D	108.1
N2A—C14A—C13A	110.5 (3)	N2B—C14B—C13B	109.3 (3)
N2A—C14A—H14A	109.6	N2B—C14B—H14C	109.8
C13A—C14A—H14A	109.6	C13B—C14B—H14C	109.8
N2A—C14A—H14B	109.6	N2B—C14B—H14D	109.8
C13A—C14A—H14B	109.6	C13B—C14B—H14D	109.8
H14A—C14A—H14B	108.1	H14C—C14B—H14D	108.3
C9A—N1A—C2A—C3A	-6.3 (5)	C9B—N1B—C2B—C3B	6.0 (5)
N1A—C2A—C3A—C4A	2.9 (5)	N1B-C2B-C3B-C4B	-2.0 (5)
C2A—C3A—C4A—N2A	-175.4 (3)	C2B—C3B—C4B—N2B	174.7 (3)
C2A—C3A—C4A—C10A	5.0 (5)	C2B-C3B-C4B-C10B	-6.2 (5)
C11A—N2A—C4A—C3A	-11.6 (4)	C11B—N2B—C4B—C3B	11.9 (4)
C14A—N2A—C4A—C3A	121.2 (4)	C14B—N2B—C4B—C3B	-120.0 (4)
C11A—N2A—C4A—C10A	167.9 (3)	C11B—N2B—C4B—C10B	-167.1 (3)
C14A—N2A—C4A—C10A	-59.3 (4)	C14B-N2B-C4B-C10B	60.9 (4)
C10A—C5A—C6A—C7A	-0.6 (5)	C10B—C5B—C6B—C7B	1.1 (5)
C5A—C6A—C7A—C8A	5.8 (5)	C5B—C6B—C7B—C8B	-5.7 (5)
C5A—C6A—C7A—Cl1A	-174.4 (3)	C5B—C6B—C7B—C11B	174.4 (3)
C6A—C7A—C8A—C9A	-2.7 (5)	C6B—C7B—C8B—C9B	2.5 (5)
Cl1A—C7A—C8A—C9A	177.4 (3)	Cl1B—C7B—C8B—C9B	-177.6 (3)
C2A-N1A-C9A-C10A	1.6 (5)	C2B—N1B—C9B—C10B	-1.8 (5)
C2A—N1A—C9A—C8A	-178.2 (3)	C2B—N1B—C9B—C8B	178.1 (3)

C7A—C8A—C9A—N1A	174.3 (3)	C7B—C8B—C9B—N1B	-174.7(3)
C7A—C8A—C9A—C10A	-5.5 (5)	C7B—C8B—C9B—C10B	5.2 (5)
N1A—C9A—C10A—C5A	-169.5 (3)	N1B—C9B—C10B—C5B	170.4 (3)
C8A—C9A—C10A—C5A	10.4 (5)	C8B—C9B—C10B—C5B	-9.4 (5)
N1A—C9A—C10A—C4A	6.0 (5)	N1B—C9B—C10B—C4B	-6.2 (5)
C8A—C9A—C10A—C4A	-174.1 (3)	C8B—C9B—C10B—C4B	174.0 (3)
C6A—C5A—C10A—C9A	-7.4 (5)	C6B-C5B-C10B-C9B	6.3 (5)
C6A—C5A—C10A—C4A	177.4 (3)	C6B-C5B-C10B-C4B	-177.3 (3)
C3A—C4A—C10A—C9A	-9.0 (5)	C3B—C4B—C10B—C9B	9.8 (5)
N2A—C4A—C10A—C9A	171.4 (3)	N2B-C4B-C10B-C9B	-171.0 (3)
C3A—C4A—C10A—C5A	166.3 (3)	C3B—C4B—C10B—C5B	-166.6 (3)
N2A—C4A—C10A—C5A	-13.3 (5)	N2B-C4B-C10B-C5B	12.6 (5)
C4A—N2A—C11A—C12A	-168.4 (3)	C4B—N2B—C11B—C12B	169.6 (3)
C14A—N2A—C11A—C12A	56.3 (4)	C14B—N2B—C11B—C12B	-56.9 (4)
C13A—N3A—C12A—C11A	61.2 (4)	C13B—N3B—C12B—C11B	-61.4 (4)
N2A—C11A—C12A—N3A	-58.8 (4)	N2B-C11B-C12B-N3B	59.1 (4)
C12A—N3A—C13A—C14A	-60.7 (4)	C12B—N3B—C13B—C14B	61.3 (4)
C4A—N2A—C14A—C13A	168.8 (3)	C4B—N2B—C14B—C13B	-169.5 (3)
C11A—N2A—C14A—C13A	-56.1 (4)	C11B—N2B—C14B—C13B	56.1 (4)
N3A—C13A—C14A—N2A	58.1 (4)	N3B—C13B—C14B—N2B	-57.8 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	D—H··· A
N3A—H3AN····N1A ⁱ	0.92 (4)	2.18 (4)	3.083 (4)	166 (4)
$N3B$ — $H3BN$ ···· $N1B^{i}$	0.99 (4)	2.12 (4)	3.088 (4)	166 (4)

Symmetry code: (i) x+1, y+1, z.